300=1/2*2000*x^2

Simple and best practice solution for 300=1/2*2000*x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 300=1/2*2000*x^2 equation:



300=1/2*2000x^2
We move all terms to the left:
300-(1/2*2000x^2)=0
Domain of the equation: 2*2000x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-1/2*2000x^2+300=0
We multiply all the terms by the denominator
300*2*2000x^2-1=0
Wy multiply elements
1200000x^2*2-1=0
Wy multiply elements
2400000x^2-1=0
a = 2400000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2400000·(-1)
Δ = 9600000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9600000}=\sqrt{640000*15}=\sqrt{640000}*\sqrt{15}=800\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-800\sqrt{15}}{2*2400000}=\frac{0-800\sqrt{15}}{4800000} =-\frac{800\sqrt{15}}{4800000} =-\frac{\sqrt{15}}{6000} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+800\sqrt{15}}{2*2400000}=\frac{0+800\sqrt{15}}{4800000} =\frac{800\sqrt{15}}{4800000} =\frac{\sqrt{15}}{6000} $

See similar equations:

| (x-3)(2x^2+5x-12)=0 | | 7x+19.4x=6.3 | | 31+5s+(s+17)=180 | | 16.4q-11.28=14.8+18q | | -19-18d=-5-19d | | y=−3+1 | | 5x–2=11x–26 | | -7.2m-16.47=4.99+14.5m+2.41 | | 12.6-3.3g=-6.1g | | h=-2h+15 | | 4(89.95)+x=538.40 | | 2/2k=5 | | 7^(-3-x)=242 | | 4x+38=2x-1 | | 19-13m=-16-10m+2 | | 8/7=v/11 | | x+42=85;=43 | | 4v+56=180 | | 4x+89.65=628.35 | | 9(s+3)=99 | | -10+20y=19y+10-7 | | 90=9(w+7) | | | | 5n-6=-16+3n | | 18.5+17.87=19.31+16.3v | | 17=e+8 | | 8(j-95)=16 | | -4f=16-5f | | 8=6t-3t=t | | x−2=−11 | | -17-13s=-14s+3 | | 99+(w+33)+(w+32)=180 |

Equations solver categories